Bruce Crumley | May 22 2023 - 1:10 am PT
Patients in eastern Virginia can expect to see the time and effort required to get prescription medication they need considerably reduced with the nearing launch of a new drone delivery program for remote locations.
Drone medication deliveries are being prepared by Virginia’s Riverside Shore Memorial Hospital Group, whose facility in Onancock on the peninsula forming the eastern perimeters of Chesapeake Bay is the overseeing operation. The service will provide faster access to prescriptions for Eastern Shore residents and inhabitants of Tangier Island, the latter of whom currently rely on or organize their own car and boat transportation to obtain orders, which can take nearly a week to arrive.
Assisting the hospital in the activity is UAV startup DroneUp, which is headquartered in Virginia Beach, VA, just south of the intended area of aerial service.
Riverside Shore Memorial Hospital Group’s medication delivery project is being supported by a $1.9 million grant from the US Department of Transportation. The agency’s Strengthening Mobility and Revolutionizing Transportation program selected the drone shuttle proposal as one of 59 innovation pitches that were awarded financial backing.
Hospital senior vice president of strategic initiatives Sally Hartman says turning to drone delivery in the same way retailers and food companies have begun reaching customers faster and at lower costs made sense in getting critical medication to people living off Virginia’s beaten track.
“We are always looking for innovative ways to provide care for our patients,” said Hartman of the hospital’s expected June service launch with DroneUp. “This partnership provides us with the opportunity to support patients in more rural communities by improving access to prescription medications with fast at-home delivery.”
Riverside’s drone transportation of medication will be pursued in two stages, with the initial planning and prototyping work using DroneUp UAVs to make mock deliveries to remote trial locations around Virginia’s Eastern Shore already under way. Phase two will begin live test runs from Riverside Hospital to patients’ homes, which will expand and transition into regular operation next month.
Hospital senior vice president of strategic initiatives Sally Hartman says turning to drone delivery in the same way retailers and food companies have begun reaching customers faster and at lower costs made sense in getting critical medication to people living off Virginia’s beaten track.
BY ZACC DUKOWITZ
15 February 2023
When it comes to using drones for commercial applications, battery life is one of the biggest limiting factors.
Extending battery life has proved a tough challenge, and one that the drone industry has been laboring away at for years.
All this work has produced steady progress, with battery life steadily increasing. But the gains in flight time for drones that fly using your standard LiPo batteries have been relatively small despite all the work put into extending them.
Some less common approaches to powering drones have been tested, and seem promising. One is using hydrogen fuel cells, and tests have also been made with powering drones using gasoline (though these don’t seem to have gone anywhere).
Of course, you can also use a tether to send power up to the drone, allowing it to stay aloft as long as you want—but this means the drone has to remain stationary, since it’s leashed to the ground by the tether.
But there may be a way to power drones from a removed power source without having to tether them to ground.
That’s right—we’re talking about powering drones with lasers.
Credit: Northwestern Polytechnical University
NEW BREAKTHROUGHS FOR LASER-POWERED DRONES
The idea of using lasers as a power source for drones has been around for at least a decade.
But new research conducted by scientists at the Northwestern Polytechnical University (NPU) in China has been making the news lately, showing progress in work toward making this technology viable.
The team of researchers at NPU have equipped a drone with a module that converts light energy into electricity, allowing it to capture power from a high-energy laser beam so it can stay in flight indefinitely.
The researchers have dubbed these UAVs optics-driven drones (ODDs).
Credit: Northwestern Polytechnical University
Of course, for this laser-powering method to work the laser needs to be able to automatically track the drone.
For this reason, the researchers have made the laser adaptive and given it the ability to track its target—the photoelectric conversion module on the bottom of the drone—using an “intelligent visual tracking algorithm.”
According to NPU researchers, the algorithm has proven effective in a variety of environments, as well as differing light and weather conditions.
The lasers used to power the drone also have an adaptive technology that allows them to shape their beams autonomously, adjusting intensity as needed based on the distance the drone is from the power source and in instances where an object is detected between the laser beam and the drone.
The laser-power drone technology was recently tested on a small quadcopter. Tests were conducted outside at night and inside with both the lights on and off.
In the tests, the drone reaches a height of just about 33 feet in the air (see below for images from the tests).
Credit: Northwestern Polytechnical University
So far the NPU system has proven to be pretty inefficient, losing about 50% of the energy transmitted from the laser.
But it works.
And that may be all that matters right now, given that electricity is fairly inexpensive and that the approach allows the drone to can stay in the air indefinitely.
OTHER LASER-CHARGING DRONE PROJECTS
Here’s a quick rundown of other noteworthy efforts to charge drones with lasers.
PowerLight
In 2012, U.S.-based PowerLight (formerly known as LaserMotive), demonstrated its wireless drone charging system by keeping a large drone in the air for 48 hours in a wind tunnel.
The system was also used to power a Lockheed Martin Stalker drone outdoors at a range of 1,970 feet in the air.
Today PowerLight says it’s working on long-range, lightweight wireless laser power transmission system. Watch the video below to learn more.
DARPA’s Drone Laser Project
In 2018, DARPA (Defense Advanced Research Projects Agency) announced a program called the Stand-off Ubiquitous Power/Energy Replenishment—Power Beaming Demo (SUPER PBD).
The goal of the program was to test technology that would charge aircraft while in flight using laser beams.
In DARPA’s approach, the aircraft has solar panels in its wings and batteries in its fuselage. At first the batteries provide power to the aircraft, but as they run down a laser beam is pointed at the craft’s solar panels, allowing it recharge and stay in flight.
DARPA selected a UAS called Silent Falcon made by a company of the same name for its laser tests.
Credit: Silent Falcon
LakeDiamond
In 2018, a startup called LakeDiamond made news for its idea to use lab-grown diamonds to recharge drones while in flight.
The diamonds allow laser beams to maintain strength over a long distance, letting them recharge photovoltaic cells on the surface of the drone. In LakeDiamond’s laser, the light produced by a diode is directed at a booster composed of reflective material, an optical component, and a small metal plate to absorb the heat.
Credit: LakeDiamond
THE BENEFITS OF CHARGING DRONES WITH LASERS
So why would you want to charge drones with lasers?
The obvious benefit is that you would no longer have to worry about battery life. Using lasers, you could hypothetically have a drone that could fly for as long as you wanted.
But there are specific use cases that would benefit from having a drone that can fly for a very long time—maybe even forever.
Here they are:
Disaster relief. During time-consuming emergency missions, like searching for victims after a flash flood or earthquake, the ability to have a drone remain in the air for long periods of time could be extremely helpful.
Traffic control. Traffic never stops, and continuously flying drones could be used to monitor traffic and help improve safety on the roads.
Security patrols. Security concerns are in place every hour of the day, a fact that supports the idea of having a constant “eye in the sky” to monitor the security of a building or perimeter.
Flying satellites. Laser-powered drones could be used for higher altitude drone operations, in which drones basically act like small low-altitude satellites.
The last one sounds a little unlikely, but it does reveal the places our imagination can take us when a drone is no longer limited by how long it can stay in the air.
Who knows—maybe we’ll see laser-powered drones rolled out within our lifetime. Results from the research being conducted today certainly makes it seem like a strong possibility.
After the cathedral of Christchurch, New Zealand, was hit by an earthquake, drones and advanced photogrammetry software supported the rebuilding work.
Surveying a damaged building can be dangerous. Mapping, using drones, reduces risk to staff and costs to the community. This case study of the iconic cathedral of Christchurch, severely hit by an earthquake, demonstrates how drones and advanced photogrammetry software delivered the orthomosaic map, enabling the accurate spatial planning needed to rebuild the cathedral.
In February 2011, New Zealand’s second most populous city was rocked by an earthquake. The iconic Christchurch Cathedral was shattered in the shake, and the clean-up is still ongoing. Christchurch's central city and eastern suburbs were badly affected.
Before the cathedral could be rebuilt and the 'red zone' surrounding it rejuvenated, a full survey was required. Christchurch City Council’s surveyor Jed Clement, licensed cadastral surveyor, stepped up to the task with the help of drones and Pix4Dmapper.
Locals describe Cathedral Square as "the heart of the city" and as being "key to Christchurch". It sits in the centre of Christchurch, both metaphorically and literally. The garden city, with its large urban parks bisected by the sleepy Ōtākaro Avon river, is known for agriculture, for being the gateway to Antarctica and, more recently, for earthquakes.
New Zealand is stretched across a fault line and earthquakes are common, although seldom as severe as the 2011 quake. By August 2012, the area had experienced more than 11,000 aftershocks of magnitude two or higher. Aftershocks were felt up to 300 kilometres away from the epicentre.
Strict building standards no doubt saved many lives. Scientists estimate that the shake that damaged the cathedral would have “totally flattened” most cities around the globe. The timber-framed homes favoured in New Zealand are relatively resistant to earthquakes, and most damage was sustained in poorly-designed buildings, or stone structures like the Christchurch Cathedral.
Prior to the 2011 earthquake, the cathedral had been damaged by earthquakes in 1881, 1888, 1901, 1922 and 2010. However, the greatest damage occurred in 2011. The first shake destroyed the spire and part of the tower, and left the rest of the building severely damaged. Aftershocks collapsed the west wall of the cathedral, and what was left of the tower had to be demolished in 2012.
Rebuilding After the Earthquake
As the city and the nation debated whether the Cathedral should be rebuilt at all, worshippers gathered in a temporary ‘Cardboard Cathedral’ made out of comfortingly earthquake-resistant materials – including cardboard. But now the cathedral is being rebuilt and commercial development in Cathedral Square and the surrounding area encouraged. Access to the area has been limited due to quake damage, and it’s hoped the development will revitalize the area.
To assist with the rebuild, the Christchurch City Council team launched a drone flight to capture ground levels and provide an up-to-date orthomosaic drone map of Cathedral Square to allow for accurate spatial planning.
The Benefits of Drones in Dangerous Situations
Much of Cathedral Square is open, but there were areas of the Square that were impossible to access due to the risks relating to construction as well as the damaged buildings, including the cathedral. Aerial photogrammetry was therefore the best choice for capturing data in these areas.
The drone could fly inside the restricted perimeter fences without risk to the operator. Just as importantly, Pix4D’s algorithms allowed for the optimal capture of imagery to render a high-quality 3D model that the surveyors could use to take precise measurements – all without entering the site.
Mapping an Inaccessible Area with Drones
The flight team met in Cathedral Square at 8am on a Sunday morning. The early start meant fewer people around the square and fewer vehicles on the road. While this caused less disruption to the public, it also had advantages for the team. Moving objects (like cars and people) may appear in the orthomosaic as transparent artefacts. While it is possible to remove these 'ghosts' and improve the appearance of the orthomosaic, the early start allowed the team to avoid capturing them in the first place.
The Christchurch City Council survey team’s drone pilots licence is pending, and they currently operate under New Zealand’s CAA Part 101 operating rules, which also regulate balloons and kites. The aerial mapping flight was approved by the city’s Roading Authority and the cathedral trust.
The team hoped for overcast weather, and got it. “We were concerned about the surface being quite reflective, which would mean losing detail in the final outputs,” says Clement. “But the morning of the flight could not have been better, being overcast and with no wind.” A total of four flights were completed: two oblique and two grid nadir to capture as much information as possible.
“Unfortunately, we had an issue with the connection to the drone on one of the flights,” says Clement. “That meant we were missing one set of oblique images over most of the square, which resulted in missed detail on the cathedral and surrounding buildings.”
Despite this issue, the team was able to reconstruct the 3D drone model in less than 23 hours in Pix4Dmapper aerial photogrammetry software.
Before take-off, eight ground control points (GCPs) were levelled to a 5mm accuracy. A further 12 checkpoints were added during processing, giving the mapping project an average ground sampling distance (GSD) of 1.38cm. “Quality ground surfaces and reporting – plus ease of use – is why we chose Pix4D,” added Clement.
Modelling a Moment in History
The model gave the team the certainty they needed to begin the detailed design phase of the southern portion of the Cathedral Square rebuild. This part of the rebuild is to coincide with the commercial development that is underway on the southern perimeter of the square, and is due to begin opening in late 2019.
Regenerate Christchurch notes that: “Redevelopment will acknowledge the past and the events that have shaped the city, while reflecting the best of the new… This is an opportunity to breathe life back into Cathedral Square and re-establish it as the heart of the city.”
The model of the square and broken cathedral is not only a useful tool, but the aerial photography is a snapshot of a moment in the city’s history.
The original version of this article was published on Pix4D.com. Last updated: 24/06/2020